
adbc - Design by Contract for AspectJ

User manual - version 0.2

Adbc is a small and lightweight library that adds support for design by contract to the AspectJ programming
language. The library essentially consists of a number of aspects that monitor your contracts at runtime
and will throw an exception whenever a contract is broken.

Requirements

� Java 6 (or later)

� AspectJ (tested on versions 1.6.12 and 1.7.2) are required

Installation

Include adbc.jar on the build path of your AspectJ project and contract enforcement should be enabled
automatically. If you're using Eclipse+AJDT, this is done as follows:

� Right-click your AspectJ project and go to �Properties�.

� Go to �AspectJ Build�, �InPath�.

� Click the �Add (External) JARs...� button and select the adbc.jar �le.
(If an exception is thrown, check the Troubleshooting section.)

� Close the Properties window with the OK button. You can now start writing contracts using the
annotations available in the be.ac.ua.ansymo.adbc.annotations package.

Note that, because the aspects of adbc can advise any method call and advice execution, you probably
want to hide AJDT's advice markers for those aspects. You can do this by right-clicking your AspectJ
project, then go to �AspectJ Tools�, �Con�gure advice markers...�. Finally set the icon for all aspects in
the be.ac.ua.ansymo.adbc package to None.

If you'd like to tinker with adbc on a small toy project before enabling it on your own projects, have a
look at the included example in the adbc/source/src/be/ac/ua/ansymo/example_bank folder.

1

http://en.wikipedia.org/wiki/Design_by_contract

Usage

Contracts in adbc are speci�ed using Java annotations. Adbc makes use of the following annotations:

@requires Speci�es the preconditions of a method, a constructor or an advice. This annotation takes
one or more strings as its value, where each string is a contract speci�ed as a boolean expression1.

@ensures Speci�es the postconditions of a method, a constructor or an advice.

@invariant Speci�es the invariants of a class or an aspect.

@advisedBy Speci�es that a method expects to be advised by the listed advice, in the given order. This
annotation can only be attached to methods, and has one or more strings as its value. Each string
should contain the canonical/absolute name of an advice. Note that an @advisedBy annotation on
a method is implicitly inherited by any overriding methods in subclasses.

@pointcutRuntimeTest If an advice is mentioned in an @advisedBy annotation, and its pointcut contains
constructs that can only be determined at runtime (e.g. if, cflow), you should attach this annota-
tion to the advice and copy these runtime tests into the annotation's value. (This information is
completely redundant, but adbc currently makes use of this annotation because all pointcut-related
information is lost after weaving.)

@AdviceName This annotation is part of AspectJ itself, and is used to give a name to an advice. An advice
is required to have a name if you want to mention it in an @advisedBy annotation.

When writing contracts, the following variables and functions are available:

$this The this object

parameters You can simply access method/advice parameters via their name

$result The return value of a method/advice, available in postconditions

$old(expr) The old function evaluates an expression before the method/advice is executed, stores the
result, such that it is available in postconditions. This is useful if, for example, you want to compare
the old value of a �eld with the new value.

$proc Depending on whether this keyword is used in the pre-or postconditions of an around advice, $proc
usually refers to the pre-or postconditions of the method being advised. In general, $proc refers
to the pre-or postconditions of the body that you *know* will be executed next when making a
proceed call. The emphasis on *know* indicates that you should only be aware of any advice that
have been mentioned explicitly in an @advisedBy annotation of the advised method.

With contract enforcement enabled, contracts are checked at runtime, guided by behavioural subtyping
and the advice substitution principle. (See the Modular reasoning section for more information.) Whenever
a contract is broken, a ContractEnforcementException is thrown, indicating which part of the contract
was broken, and who is to blame.

1By default, contracts are JavaScript expressions. Other languages can be used by changing the scripting engine.

2

http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://dl.acm.org/citation.cfm?id=2162015

Modular reasoning

Modular reasoning is about the ability to reason about a method call by just looking at the method body's
contracts (in the static type). In practical terms, it should be su�cient to inspect the tooltip you get
when hovering over a method call in Eclipse. (In particular, that tooltip also includes the method body's
contracts, since its annotations are displayed.) These contracts should be su�cient, in the sense that
you can rely on them to be the minimum requirements and guarantees that will actually hold at runtime.

However, like most good things, modular reasoning is not something you get for free. Modular reasoning
is not automatically guaranteed by Java, and certainly not by AspectJ. In Java, a method call might
behave di�erently from what you expect. The method body being executed at runtime (in the dynamic
type) could be di�erent from the method body that you expected (in the static type). Java by itself does
not prevent you from implementing completely di�erent behaviour in an overriding method, compared to
the behaviour of the overridden method.

To obtain modular reasoning in Java, there are some �behavioural subtyping� rules you need to take
into account when implementing a class:

� The preconditions of methods should be equal to or weaker than those in the supertype.

� The postconditions of methods should be equal to or stronger than those in the supertype.
(However, this constraint only applies if the precondition of the supertype held in the pre-state. If
it did not hold, you know that the static type cannot be the supertype or any other ancestor, so
you can't �surprise� the caller even if the postcondition is weaker than the supertype.)

� Invariants of the supertype must be preserved.

If a class is unable to comply with these rules, you can always write a wrapper class around whichever
class you'd like to extend instead. (.. though you lose the bene�t of being able to substitute for that
class.)

Modular reasoning in AspectJ presents some additional complexity: Not only can the dynamic type di�er
from the static type at a method call, but an advice could also completely change the behaviour of that
method call. Luckily, there is a very similar set of rules for writing advice, called the advice substitution

principle (ASP). Note that, if we refer to �contracts of an advised join point�, this refers to the contracts
of the method body in the static type of an advised method call. (This also applies to advice that matches
on execution join points; they modify the behaviour of method calls just the same..)

� The preconditions of the advice should be equal to or weaker than those of the join points it advises.

� The postconditions of the advice should be equal to or stronger than those of the join points it
advises. (Again, this constraint only applies if the precondition of the advised join point held in the
pre-state.)

� Invariants of the advised join points must be preserved.

The above rules apply to around advice. Since the contracts of before/after advice do not include the
e�ects of their implicit proceed call, there are some small di�erences in their ASP rules. In case of before
advice:

3

� The preconditions of the advice should be equal to or weaker than those of the join points it advises.

� If the preconditions of the advised join points held before executing the advice, they should still hold
at the end of the advice.

� Invariants of the advised join points must be preserved.

In case of after advice:

� The preconditions of the advice should be equal to or weaker than the postconditions of the advised
join point.

� If the postconditions of the advised join point held before executing the advice, they should still
hold at the end of the advice.

� Invariants of the advised join points must be preserved.

In case an advice is unable to comply with the ASP, this means the advice cannot help but create
surprising behaviour that was not expected by the caller of an advised method. To avoid such surprises,
we should make the caller aware of the advice somehow. This is done in adbc by means of the @advisedBy

annotation. If an advice is non-ASP-compliant, it should add its name to an @advisedBy annotation in all
of its join point shadows. In other words, the advice name should be visible in all method bodies it advises.
(Note that the @advisedBy annotation is automatically inherited by subclasses.) If one of these methods
is ever called, the caller will notice the @advisedBy annotation and is aware the method's contracts are
altered by the advice listed in an @advisedBy annotation.

In summary, this is adbc's approach to modular reasoning in AspectJ:

� When implementing classes, try to take into account the behavioural subtyping rules. If this is not
possible, write a wrapper class instead.

� When implementing advice, try to take into account the rules of the ASP.

� If an advice cannot comply with the ASP, the advice's name should be mentioned in an @advisedBy

annotation at the join point shadows.

� The pointcut of a non-ASP-compliant advice may not include execution join points. (You can
only determine at runtime which method calls are a�ected by advice on execution join points.
As such, it's unclear where to put the @advisedBy annotations for such advice.)

� If multiple non-ASP-compliant advice are advising the same join point, they should be ex-
ecuted in the order spec�ed by the @advisedBy annotation of the join point. When making a
proceed call, a non-ASP-compliant advice must also be aware of the advice that follow it in
the @advisedBy annotation.

� If ASP-compliant and non-ASP-compliant advice are advising the same join point, the non-
ASP-compliant advice get higher precedence. (This is because ASP-compliant advice do not
have to take into account the contracts of other advice that share some of its join points.)

4

Examples

Writing contracts for classes

The following example of a simple Square class demonstrates the basic syntax of contracts:

@invariant("$this.getWidth()==$this.getHeight()")

class Square {

@requires("s > 0"})

@ensures({"$this.getHeight()==s", "$this.getWidth()==s"})

public void setSize(int s) {...}

@ensures("$result==$this.getWidth()*$this.getWidth()")

public int getArea() {...}

@ensures({"$this.getX()==$old($this.getX())+x",

"$this.getY()==$old($this.getY())+y")

public void move(int x, int y) {...}

...

}

Note that a contract can consist of multiple parts. For example, the postcondition of setSize() consists
of parts $this.getHeight()==s and $this.getWidth()==s. This is equivalent to $this.getHeight()==s

&& $this.getWidth()==s. The bene�t of writing a contract in multiple parts is: if a contract is broken,
we can pinpoint which part was broken, which is more useful than just stating �this contract was broken�.

Writing contracts for ASP-compliant aspects

The following is an example of a simple caching advice. Its preconditions are the same as those of the
join point it advises. The postconditions are slightly stronger, due to the addition of isCached(i,val).
Consequently, the advice satis�es the advice substitution principle.

aspect ListCache {

@requires("$proc"})

@ensures("$proc && isCached(i,val)")

void around(int i, Object val):

call(void List.set(int, Object)) && args(i, val) {

...

}

...

}

Writing contracts for advice isn't all that di�erent from writing contracts for methods. What is mainly
interesting here is the use of the $proc keyword. In the precondition, it refers to the preconditions of
List.set(). Note that the pointcut could potentially also match on an overridden version of List.set().
If this is the case, the advice should technically also take into account the preconditions of overridden
versions, as calls to those methods are advised as well. Likewise, the $proc keyword in the postcondition
refers to the postconditions of List.set() (or an overridden version).

5

Writing contracts for non-ASP-compliant aspects

The following is an example of an authentication advice that does not satisfy the advice substitution
principle. This is because the postcondition is true if the user is not logged in, which clearly is weaker
than the postcondition of Account.transfer().

public aspect Authentication {

@requires("$proc")

@ensures({"from.getOwner().isLoggedIn()?$proc:true"})

@AdviceName("authenticate")

void around(Account from, double amount, Account to):

call(void Account.transfer(double, Account))

&& args(amount, to) && target(from) {

if (from.getOwner().isLoggedIn()) {

proceed(from, amount, to);

}

}

...

}

Because this advice does not satisfy the advice substitution principle, it could cause surprises for anyone
calling Account.transfer(). More speci�cally, if the user is not logged in, nothing will happen. If this
outcome is not speci�ed in Account.transfer(), �nothing� isn't exactly what we expected to happen
when calling transfer.

However, we can restore modular reasoning by adding an @advisedBy annotation to the join point shadows
of the authentication advice. In this case, we'll add the annotation to the Account.transfer() method:

public class Account{

@requires({"amount>0", "to!=null"})

@ensures({"$this.getAmount()==$old($this.getAmount())-amount",

"to.getAmount()==$old(to.getAmount())+amount"})

@advisedBy({"com.bankapp.aspects.Authentication.authenticate"

,"com.bankapp.aspects.Authorization.authorize"})

public void transfer(double amount, Account to) {...}

...

}

In this example, the @advisedBy annotation in Account.transfer() mentions two advice: authenticate

and authorize. (Note that any advice in an @advisedBy annotation must have a name, i.e. an @Advice-
Name annotation.) Adding this @advisedBy annotation means that the transfer method is expecting to
be advised by these two advice in the given precedence/order. The @advisedBy annotation is now part of
Account.transfer()'s contracts, and anyone who wishes to call this method should now be aware of the
advice mentioned in the annotation, and their contracts.

In e�ect, when calling transfer, you should now ensure the preconditions of authenticate. However,
note that any use of the $proc keyword in authenticate will refer to the preconditions of the next
advice in the @advisedBy annotation, i.e. authorize's preconditions. In turn, the $proc keyword in
authorize's preconditions will refer to transfer's preconditions. In this sense, every advice mentioned in

6

the @advisedBy clause is can be viewed as a sort-of wrapper around the preconditions of transfer. The
same logic also applies to the postconditions and invariants when calling transfer.

Finally, I should also mention that these @advisedBy annotations are automatically inherited by subclasses.
This means that you don't have to add the annotation again when overriding the transfer method.

Con�guration

Adbc exposes a few con�guration options, such as enabling/disabling contract enforcement, whether or
not postconditions or the substitution principle should be checked, or which scripting engine should be
used to evaluate contracts. These options can be con�gured by simply modifying the static �elds in the
AdbcConfig class at any time.

Troubleshooting

� In case Eclipse throws an exception if you try to include adbc.jar to the AspectJ build path, you
can get around this problem by simply putting the adbc source code into your project instead. This
seems due to an AJDT bug similar to #244300. Note that you may be able to include adbc.jar on
the Aspect Path instead of the Inpath, but then you will only get contract enforcement on classes,
not aspects.

� If parameter names are not available in contracts, try passing the "-g:var" command-line parameter
to the compiler. (This should be enabled by default when using AJDT.) Otherwise, if parameter
names cannot be retrieved, you can use "arg0", "arg1", .. instead.

Caveats

� Keep in mind that adbc is currently still a proof of concept. This means some basic features are
still missing:

� Invariants can only be attached to a class or aspect, not directly to a �eld.

� There is no construct yet to easily inherit contracts from a super class when writing the
contracts of an overriding method.

� The performance of adbc has lots of room for improvement. (caching, pointcuts not relying
on c�ow, avoid relying on the dynamic parts of thisjoinpoint, ..)

� There is no syntactic sugar to make $this implicit in method calls; it should always be men-
tioned explicitly.

� The advice substitution principle cannot be enforced yet on higher-order advice (advice that advises
advice..), unless this advice accesses the non-static part of the thisjoinpoint object. (Our contract
enforcement advice needs access to that object, but it is created lazily by the higher-order advice,
so it may or may not be available..)

7

https://bugs.eclipse.org/bugs/show_bug.cgi?id=244300

� Checking behavioural subtyping currently assumes that overriding methods use the same parameter
names as the overridden method. (This could be solved using e.g. the Paranamer library..)

� There is basic support for the @advisedBy annotation, but several things can be improved:

� An advice mentioned in an @advisedBy annotation has to be mentioned by its absolute/canon-
ical name. It would be nicer if you could use its simple name (+ an import statement).

� If multiple advice are mentioned in an @advisedBy annotation:

� We do not enforce the ordering of the listed advice, but assume this is done by a separate
declare precedence statement.

� When resolving the $proc variable, we assume that the advice mentioned in the @advisedBy
annotation use the same parameter names as the join point they advise. (Should be
possible to �gure out the mapping from the advice's names to those used by the join
point.. Could be done by examining the advice's pointcut, but I'd rather not re-invent
parts of the AspectJ compiler..)

� If an advice is mentioned in an @advisedBy annotation and its pointcut makes use of
constructs that can only be determined at runtime, like cflow or if, you'll currently need to
copy them into a @pointcutRuntimeTest annotation attached to the advice. This is needed
to determine the e�ective speci�cation of methods that mention such an advice in their
@advisedBy annotation. The @pointcutRuntimetest annotation is technically redundant
information, but it's tricky to �x this since there's currently no such thing as a re�ection
API for pointcuts.. Another option would be to compile the e�ective speci�cations as a
preprocessing step, as it can be done statically given the source code..

� Even though advice can have names (using an @AdviceName annotation), AspectJ currently
does not support overriding advice, so it's of course not possible either to make use of this
feature in an @advisedBy annotation.. (The @advisedBy annotation could expect a certain
aspect, but at runtime a subaspect could �ll in that role just the same.)

Release notes

� Version 0.2

� If an advice cannot comply with the advice substitution principle, modular reasoning can be
restored with the @advisedBy annotation

� An advice can refer to the contracts of the advised join point with the $proc keyword

� Con�gurable scripting engine + con�gurable variable pre�x (i.e. the dollar sign in $this,
$result, etc.) This feature was mainly added so you can switch to the Groovy interpreter,
which allows you to access private members in contracts, if desired. An identi�er starting
with a dollar sign is invalid in Groovy however, which is why you can change it to some other
symbol..

� More information is shown when a contract is broken (e.g. where in the source code is the
contract that was broken)

� Support for contracts on constructors

8

� Version 0.1

� Initial release

� Basic support for preconditions, postconditions and invariants

� Enforces behavioural subtyping for classes, the advice substitution principle for advice

Contact

If you have any questions, suggestions or other feedback, feel free to contact me at tim.molderez@ua.ac.be.

9

mailto:tim.molderez@ua.ac.be

